
scorevideo_lib Documentation
Release 0.1.0

U8N WXD

May 23, 2019

Contents:

1 Getting Started 1
1.1 Getting the Code and Dependencies . 1

2 Contributing 3
2.1 Your First Contribution . 3
2.2 Guidelines . 4

3 scorevideo_lib 7
3.1 scorevideo_lib package . 7

4 Indices and tables 23

Python Module Index 25

i

ii

CHAPTER 1

Getting Started

Our code is hosted here: https://github.com/U8NWXD/scorevideo_lib

1.1 Getting the Code and Dependencies

1. Choose where you want to download the code, and navigate to that directory. Then download the code.

$ cd path/to/desired/directory
$ git clone https://github.com/U8NWXD/scorevideo_lib

2. Install python 3 from https://python.org or via your favorite package manager

3. Install virtualenv

$ pip3 install virtualenv

4. If you get a note from pip about virtualenv not being in your PATH, you need to perform this step. PATH
is a variable accessible from any bash terminal you run, and it tells bash where to look for the commands
you enter. It is a list of directories separated by :. You can see yours by running echo $PATH. To run
virtualenv commands, you need to add python’s packages to your PATH by editing or creating the file
~/.bash_profile on MacOS. To that file add the following lines:

PATH="<Path from pip message>:$PATH"
export PATH

5. Then you can install dependencies into a virtual environment

$ cd scorevideo_lib
$ virtualenv -p python3 venv
$ source venv/bin/activate
$ pip install -r requirements.txt

Now you’re ready to use the library! You can check out the API reference here.

1

https://github.com/U8NWXD/scorevideo_lib
https://python.org
modules.html

scorevideo_lib Documentation, Release 0.1.0

Note: If your data is from dyad assays and structured accordingly, you can transfer lights-on marks
my running the transfer_lights_on_marks.py tool in the directory of log files like so: python
transfer_lights_on_marks.py. If you aren’t sure if these requirements are met, they probably aren’t. This
is only useful for a few researchers.

2 Chapter 1. Getting Started

CHAPTER 2

Contributing

2.1 Your First Contribution

1. Create a fork of this repository on GitHub under your own account.

2. Follow the Getting Started instructions, substituting references to the main repository for your fork.

3. Create a new branch

$ git checkout -b my-new-branch

4. Make some awesome commits

$ # Make some changes
$ git commit

5. Make sure all tests pass

$./test.sh
$ # All tests should pass, and pylint and mypy should raise no complaints

6. Merge in any changes from the main repository that might have occurred since you made the fork. Fix any
merge conflicts

$ git checkout master
$ git pull upstream master
$ git checkout my-new-branch
$ git merge master

7. Push the branch:

$ git push -u origin my-new-branch

8. Submit a pull request on GitHub

3

https://www.github.com
getting-started.html
https://www.github.com

scorevideo_lib Documentation, Release 0.1.0

9. Thanks for your contribution! One of the maintainers will get back to you soon with any suggested changes or
feedback.

2.2 Guidelines

Any code contributions should follow the following guidelines.

2.2.1 Code Style

Python code should conform to the PEP8 style guidelines.

Docstrings should conform to the Google Style. For example (copied from Google’s Style Guide):

def fetch_bigtable_rows(big_table, keys, other_silly_variable=None):
"""Fetches rows from a Bigtable.

Retrieves rows pertaining to the given keys from the Table instance
represented by big_table. Silly things may happen if
other_silly_variable is not None.

Args:
big_table: An open Bigtable Table instance.
keys: A sequence of strings representing the key of each table row

to fetch.
other_silly_variable: Another optional variable, that has a much

longer name than the other args, and which does nothing.

Returns:
A dict mapping keys to the corresponding table row data
fetched. Each row is represented as a tuple of strings. For
example:

{'Serak': ('Rigel VII', 'Preparer'),
'Zim': ('Irk', 'Invader'),
'Lrrr': ('Omicron Persei 8', 'Emperor')}

If a key from the keys argument is missing from the dictionary,
then that row was not found in the table.

Raises:
IOError: An error occurred accessing the bigtable.Table object.

"""

2.2.2 Testing

To run all tests, execute test.sh. These tests are checked are run by Travis CI on all pull requests and the master
branch. Before each commit, run test.sh and ensure that all tests pass. All tests should pass on each commit to
make reverting easy.

Unit Testing

Unit testing is performed using pytest. To run these tests, execute python -m pytest from the repository root.

4 Chapter 2. Contributing

https://www.python.org/dev/peps/pep-0008/
https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings
https://github.com/google/styleguide
https://travis-ci.com
https://pytest.org/

scorevideo_lib Documentation, Release 0.1.0

Code and Style Analysis

PEP8 are checked by pylint. pylint also performs static code analysis to catch some programming errors. This
analysis is intended to be a fall-back defense, as unit testing should be thorough.

Type Checking

All code should use type hints wherever type cannot be inferred. At a minimum, all function prototypes should have
type hints for the return value and each parameter. Type hinting is performed in the code itself, not in docstrings. Static
type analysis is performed by mypy

Code Coverage

When running the test suite using test.sh, code coverage is computed by pytest-cov when running pytest and
output after test results. Use these results to ensure that all tests are being covered. If the total coverage is not 100%,
run coverage report -m to see which lines were not tested. Incomplete coverage may be acceptable if the
untested lines should not have been tested (e.g. code stubs for un-implemented functions).

Coverage is tracked by Codecov, which serves the badge at the top of this README.

2.2. Guidelines 5

https://pytest-cov.readthedocs.io/en/latest/
https://codecov.io

scorevideo_lib Documentation, Release 0.1.0

6 Chapter 2. Contributing

CHAPTER 3

scorevideo_lib

3.1 scorevideo_lib package

3.1.1 Submodules

3.1.2 scorevideo_lib.add_marks module

Add marks from annotations (behaviors) in other logs

scorevideo_lib.add_marks.copy_mark(logs: List[Tuple[scorevideo_lib.parse_log.Log, date-
time.timedelta, int]], src_pattern: str, dest: scorev-
ideo_lib.parse_log.RawLog, dest_label: str) → scorev-
ideo_lib.parse_log.RawLog

Copy a behavior into another log file as a mark, adjusting time and frame

Time and frame are adjusted so as to be correct (potentially by being negative) in relation to the other entries in
dest. The logs are aligned in time using the provided start time and frame information.

Parameters

• logs – List of tuples containing log to search for src_pattern in and account for when
adjusting time and frame, time at which the next video (dest for last video) starts, and
frame at which the next video (dest for last video) starts

• src_pattern – Search pattern (regular expression) that identifies the behavior to copy

• dest – Log to insert mark into

• dest_label – Label for inserted mark

Returns A copy of dest, but with the new mark inserted

scorevideo_lib.add_marks.copy_mark_disjoint(logs: List[scorevideo_lib.parse_log.Log],
src_pattern: str, dest: scorev-
ideo_lib.parse_log.RawLog, dest_label:
str)→ scorevideo_lib.parse_log.RawLog

Copy a behavior into another log file as a mark, adjusting time and frame

7

scorevideo_lib Documentation, Release 0.1.0

Time and frame are adjusted so as to be correct (potentially by being negative) in relation to the other entries
in dest, assuming that the logs in logs are in order, consecutive, and non-overlapping and that dest begins
immediately after the last behavior scored in the last log of logs.

Parameters

• logs – List of consecutive and non-overlapping logs to search for src_pattern in and
account for when adjusting time and frame

• src_pattern – Search pattern (regular expression) that identifies the behavior to copy

• dest – Log to insert mark into

• dest_label – Label for inserted mark

Returns A copy of dest, but with the new mark inserted

scorevideo_lib.add_marks.get_ending_behav(behavs: List[scorevideo_lib.parse_log.BehaviorFull],
end_descriptions: List[str]) → scorev-
ideo_lib.parse_log.BehaviorFull

Get the behavior whose description is found in a list

Parameters

• behavs – List of behaviors whose descriptions to search through

• end_descriptions – List of descriptions to search for

Returns: The first behavior whose description is found in the list

scorevideo_lib.add_marks.get_ending_mark(marks: List[scorevideo_lib.parse_log.Mark]) →
scorevideo_lib.parse_log.Mark

Get the mark that has END_MARK as its Mark.name

Parameters marks – List of marks to search through

Returns The identified Mark

Raises ValueError – When no matching mark is found

3.1.3 scorevideo_lib.base_utils module

Basic utilities for generally applicable functions

class scorevideo_lib.base_utils.BaseOps
Bases: object

Superclass for basic operations

scorevideo_lib.base_utils.add_to_partition(elem: str, partitions: List[List[str]], is_equiv:
Callable[[str, str], bool])

Helper function to add an element to an appropriate equivalence class

Adds the element to an existing class if one is available or creates a new class by adding a partition if necessary.

Parameters

• elem – The element to add

• partitions – The list of equivalence classes to add elem to

• is_equiv – A function that accepts two elements of lst and returns whether those elements
should be in the same equivalence class. For proper functioning, should implement an
equivalence relation.

Returns: The equivalence classes provided but with elem added.

8 Chapter 3. scorevideo_lib

scorevideo_lib Documentation, Release 0.1.0

scorevideo_lib.base_utils.equiv_partition(lst: Iterable[str], is_equiv: Callable[[str, str],
bool])→ List[List[str]]

Splits elements into equivalence classes using a provided callback

Parameters

• lst – The elements to divide in to equivalence classes. Is not modified.

• is_equiv – A function that accepts two elements of lst and returns whether those elements
should be in the same equivalence class. For proper functioning, should implement an
equivalence relation.

Returns: A list of the partitions. Each element will be in exactly one partition.

scorevideo_lib.base_utils.remove_trailing_newline(s: str)
Remove a single trailing newline if it exists in a string

>>> remove_trailing_newline('s\n')
's'
>>> remove_trailing_newline('s')
's'
>>> remove_trailing_newline('s\n\n')
's\n'

Parameters s – The string to remove a newline from

Returns: s, but without a terminal trailing newline, if it was present

3.1.4 scorevideo_lib.exceptions module

Custom exceptions

exception scorevideo_lib.exceptions.FileFormatError
Bases: Exception

Raised when a file is improperly formatted.

The message should describe the file and how it is mis-formatted.

static from_lines(filename, found_line, expected_line)
Create new object with message from parameters.

Parameters

• filename – Name of file that is improperly formatted

• found_line – The line that was found in the file

• expected_line – The line that was expected to be found

Returns: None

3.1.5 scorevideo_lib.parse_log module

Parse log files

class scorevideo_lib.parse_log.BehaviorFull(behavior_line: str)
Bases: scorevideo_lib.parse_log.SectionItem

Store an interpreted representation of a behavior from the full section

3.1. scorevideo_lib package 9

scorevideo_lib Documentation, Release 0.1.0

frame
A positive integer representing the frame number on which the behavior was scored.

time
A :py:class:timedelta object that represents the time elapsed from the start of the clip to the behavior being
scored. This is a representation of the time listed in the log line.

description
The name of the behavior that appears as the second-to-last element in the provided line

subject
Always the string either

static validate_subject(subject: str)→ bool
Check whether subject is a valid subject element

To be valid, subject must be exactly either

>>> BehaviorFull.validate_subject("either")
True
>>> BehaviorFull.validate_subject(" either")
False

Parameters subject – Potential subject element of a log to check

Returns: True if subject is valid, False otherwise

class scorevideo_lib.parse_log.Log
Bases: scorevideo_lib.base_utils.BaseOps

Store a parsed version of a log file

This version stores only the information contained in the log, not any information tied to a particular file (e.g.
file name, reference to file, number of spaces separating columns).

full
A list of BehaviorFull objects, each representing a line from the log file’s FULL section

marks
A list of Mark objects, each representing a mark from the log file

extend(log: scorevideo_lib.parse_log.Log)→ None
Add each element of each section of a log to the current log.

Parameters log – Log to add elements from

Returns None

classmethod from_file(log_file)→ scorevideo_lib.parse_log.Log
Create a Log object from a file

Parameters log_file – File to read from

Returns A parsed representation of log_file

classmethod from_log(log: scorevideo_lib.parse_log.Log)→ scorevideo_lib.parse_log.Log
Create a Log object from another Log object

Parameters log – The object to copy

Returns A copy of the log parameter

10 Chapter 3. scorevideo_lib

scorevideo_lib Documentation, Release 0.1.0

classmethod from_raw_log(log: scorevideo_lib.parse_log.RawLog) → scorev-
ideo_lib.parse_log.Log

Create a Log` from a RawLog object

In the process, the log lines are parsed into their respective objects. This process is lossy.

Parameters log – The object to parse and to create the object from

Returns A parsed version of log

sort_lists()→ None
Sort the lists of parsed material as applicable

Returns None

class scorevideo_lib.parse_log.Mark(frame: int, time: datetime.timedelta, name: str)
Bases: scorevideo_lib.parse_log.SectionItem

Store a mark from the MARKS section

frame
An integer representing the frame number at which the mark is placed

time
A :py:class:timedelta object that represents the time elapsed from the start of the clip to the mark. This is
a representation of the time listed in the log line. Negative times are supported and are represented as their
absolute times prefixed with a -.

name
Name of the mark that describes its meaning

classmethod from_line(line: str)→ scorevideo_lib.parse_log.Mark
Create a new :py:class:Mark from a provided line from the log file

>>> mark = Mark.from_line("54001 30:00.03 video end")
>>> mark.frame
54001
>>> mark.time
datetime.timedelta(seconds=1800, microseconds=30000)
>>> mark.name
'video end'

Parameters line – A line from the MARKS section of a log file

Returns None

Raises TypeError – When the provided line does not conform to the expected format. No-
tably, all 3 elements of the line must be separated from each other by at least 2 spaces.

static time_to_str(time: datetime.timedelta)→ str
Converts a timedelta object into a string

>>> Mark.time_to_str(timedelta(seconds=1800.07))
'30:00.07'
>>> Mark.time_to_str(timedelta(seconds=4.4557))
'0:04.45'
>>> Mark.time_to_str(timedelta(seconds=3600.5))
'1:00:00.50'
>>> Mark.time_to_str(timedelta(seconds=-1800.07))
'-30:00.07'

3.1. scorevideo_lib package 11

scorevideo_lib Documentation, Release 0.1.0

Parameters time – The time to turn into a string.

Returns A string representation of the time, with 2 decimal-places of second precision. The
result is truncated if necessary.

Raises ValueError – Raised if time is greater than 1 day.

to_line(other_line: str)→ str
Converts a :py:class:Mark object into a log line in the MARKS section

other_line is used as a template. It should come from the log file the returned line will be inserted
into. Only loose error checking is performed, and invalid lines may produce undefined output. Similarly,
if the constructed line cannot fit into the format prescribed by other_line, the output is undefined.

>>> mark = Mark(734, timedelta(seconds=1800.07), "video end")
>>> mark.to_line(" 1 0:00.03 video start")
'734 30:00.07 video end'

Parameters other_line – A line from the MARKS section into which the resulting string
could be inserted. This defines the format this method will attempt to match.

Returns: A log line that could be inserted into the MARKS section of the log from which
other_line came.

Raises ValueError – Raised if other_line is invalid or the mark’s time is greater than 1
day

to_line_tab()→ str
Converts a :py:class:Mark object into a log line in the MARKS section

The resulting line is delimited by 4 spaces.

>>> mark = Mark(734, timedelta(seconds=1800.07), "video end")
>>> mark.to_line_tab()
'734 30:00.07 video end'

Returns A log line that could be inserted into the MARKS section of the log from which
other_line came. Note that since the line has a fixed delimiter, this line may not ap-
pear to match the columns in the file. However, this delimitation is assumed by some other
programs for scorevideo logs, including behaviorcode.

Raises ValueError – Raised if other_line is invalid or the mark’s time is greater than 1
day

class scorevideo_lib.parse_log.RawLog
Bases: scorevideo_lib.base_utils.BaseOps

Store an interpreted form of a log file and perform operations on it

header
List of the lines in the header section

video_info
List of the lines in the video info section

commands
List of the lines in the commands section

12 Chapter 3. scorevideo_lib

scorevideo_lib Documentation, Release 0.1.0

raw
List of the lines in the raw log section

full
List of the lines in the full log section

notes
List of the lines in the notes section

marks
List of the lines in the marks section

classmethod from_file(log_file)→ scorevideo_lib.parse_log.RawLog
Parse log file into its sections.

Populate the attributes of the RawLog class by using the get_section_* static methods to extract sections
that are stored in attributes.

Parameters log_file – An open file object that points to the log file to read.

classmethod from_raw_log(raw_log: scorevideo_lib.parse_log.RawLog) → scorev-
ideo_lib.parse_log.RawLog

Make a copy of a RawLog object by copying each attribute

Parameters raw_log – Object to copy

Returns Copy of raw_log

static get_section(log_file, start: str, header: List[str], end: str)→ List[str]
Get an arbitrary section from a log file.

Extract an arbitrary section from a log file. The section is defined by a line at its start and a line at its end,
neither of which are considered part of the section (not returned). A header section is also specified, the
lines of which will be checked and excluded from the section. A header starts on the line immediately
following the start line. If the header is not found, or if a line in it does not match, a FileFormatError is
raised. If the end of the file is unexpectedly found before completing a section, a FileFormatError is raised.

Parameters

• log_file – An open file object that points to the log file to read. The file object must be
ready to be read, and it should be at the start of the file.

• start – Line that signals the start of the section

• header – List of lines that form a header to the section. If no header should be present,
pass an empty list.

• end – Line that signals the end of the section

Returns A list of the lines making up the section in sequential order, with each line a separate
element in the list. Newlines or return carriages are stripped from the ends of lines.

static get_section_commands(log_file)→ List[str]
Get the commands section of a log.

Extract the commands section (headed by the line “COMMAND SET AND SETTINGS”) used in gener-
ating the log file. This section specifies the key commands (letters) used to signal the beginning and end
of each behavior.

Parameters log_file – An open file object that points to the log file to read. The file object
must be ready to be read, and it should be at the start of the file.

Returns A list of the lines making up the section in sequential order, with each line a separate
element in the list. Newlines or return carriages are stripped from the ends of lines.

3.1. scorevideo_lib package 13

scorevideo_lib Documentation, Release 0.1.0

static get_section_full(log_file)→ List[str]
Get the full log section of a log.

Extract the section of the log that contains the full scoring log. This section contains the frame number and
time of each scored behavior along with the full name assigned to that behavior in the commands section

Parameters log_file – An open file object that points to the log file to read. The file object
must be ready to be read, and it should be at the start of the file.

Returns A list of the lines making up the section in sequential order, with each line a separate
element in the list. Newlines or return carriages are stripped from the ends of lines.

static get_section_header(log_file)→ List[str]
Get the header section of a log.

Extract the top section (top two lines) of a log. This section includes a statement that the log was created
by scorevideo and the name of the log file.

Parameters

• log_file – An open file object that points to the log file to read.

• file object must be ready to be read, (The) – and it should be at the
start of the file.

Returns A list of the lines making up the header in sequential order, with each line a separate
element in the list. Newlines or return carriages are stripped from the ends of lines.

static get_section_marks(log_file)→ List[str]
Get the marks section of a log.

Extract the marks section of the log, which stores the frame number and time at which the video starts and
stops. Additional marks can be added here, such as when statistical analysis should begin or when fish
started behaving.

Parameters log_file – An open file object that points to the log file to read. The file object
must be ready to be read, and it should be at the start of the file.

Returns A list of the lines making up the section in sequential order, with each line a separate
element in the list. Newlines or return carriages are stripped from the ends of lines.

static get_section_notes(log_file)→ List[str]
Get the notes section of a log.

Extract the notes section of the log, which contains arbitrary notes specified by the researcher during
scoring, one per line.

Parameters log_file – An open file object that points to the log file to read. The file object
must be ready to be read, and it should be at the start of the file.

Returns A list of the lines making up the section in sequential order, with each line a separate
element in the list. Newlines or return carriages are stripped from the ends of lines.

static get_section_raw(log_file)→ List[str]
Get the raw log section of a log.

Extract the section of the log that contains the raw scoring log. This section contains the frame number
and time of each scored behavior along with the key command that was scored for that behavior

Parameters log_file – An open file object that points to the log file to read. The file object
must be ready to be read, and it should be at the start of the file.

Returns A list of the lines making up the section in sequential order, with each line a separate
element in the list. Newlines or return carriages are stripped from the ends of lines.

14 Chapter 3. scorevideo_lib

scorevideo_lib Documentation, Release 0.1.0

static get_section_video_info(log_file)→ List[str]
Get the video info section of a log.

Extract the video info section (headed by the line “VIDEO FILE SET” of a log. This section includes
information about the video including format, directory, name, start and end frames, duration, frame rate
(FPS), and number of subjects

Parameters log_file – An open file object that points to the log file to read. The file object
must be ready to be read, and it should be at the start of the file.

Returns A list of the lines making up the section in sequential order, with each line a separate
element in the list. Newlines or return carriages are stripped from the ends of lines.

static section_to_strings(start: str, header: List[str], body: List[str], end: Union[str, None-
Type], trailing: List[str] = None)→ List[str]

Combine a section’s components into a list of strings for writing

Parameters

• start – The invariant line that signals the start of the section

• header – Any invariant header lines that follow start

• body – The variably body of the section

• end – The invariant line that signals the end of the section

• trailing – Any lines that follow the end line

Returns: A list of strings suitable for writing to a file. Note that the strings do not end in a newline.

to_lines()→ List[str]
Convert the current RawLog into the strings for writing to a file

Returns: A list of strings (that do not end in newlines) that can be written to a file to create a
properly-formatted log file.

class scorevideo_lib.parse_log.SectionItem
Bases: scorevideo_lib.base_utils.BaseOps

Superclass for entries in a section of a log

static split_line(line: str)→ List[str]
Split a RawLog file line in a section into its elements

Elements must be separated by at least two spaces

>>> SectionItem.split_line(" hi 4 test >?why my4 j ")
['hi', '4', 'test', '>?why', 'my4 j']

Parameters line – Line to split

Returns: A list of the elements in the provided line

static str_to_timedelta(time_str: str)→ datetime.timedelta
Convert a string representation of a time into a :py:class:timedelta

>>> SectionItem.str_to_timedelta("30:00.03")
datetime.timedelta(seconds=1800, microseconds=30000)

Parameters time_str – String representation of the time or duration

3.1. scorevideo_lib package 15

scorevideo_lib Documentation, Release 0.1.0

Returns: :py:class:timedelta object that represents the same duration or time as time_str does.

static validate_description(desc: str)→ bool
Check whether desc is a valid behavior description

To be valid, desc must be made exclusively of digits, letters, and spaces.

>>> SectionItem.validate_description("Some Description 3!")
False
>>> SectionItem.validate_description("Some Description 3")
True
>>> SectionItem.validate_description("Some Description 3 here")
True
>>> SectionItem.validate_description("Some \n Description 3!")
False

Parameters desc – The potential behavior description to check

Returns: True if desc is valid, False otherwise

static validate_frame(frame: str)→ bool
Check whether frame represents a valid frame number

A valid frame number is any integer. Specifically, any frame that is composed solely of one or more
digits 0-9 is accepted. Negative frames are allowed and denoted by a prefix of -.

>>> SectionItem.validate_frame("-5")
True
>>> SectionItem.validate_frame("05")
True
>>> SectionItem.validate_frame("hi5")
False
>>> SectionItem.validate_frame("50")
True
>>> SectionItem.validate_frame(" 50 ")
False

Parameters frame – Potential frame number to validate

Returns: True if frame is a valid frame number, False otherwise

static validate_time(time_str: str)→ bool
Check whether time_str represents a valid log time stamp

The following formats are accepted where # represents a digit 0-9 * #:##.## * ##:##.## * #:##:##.
* ##:##:##.##

A prefix of - is also allowed.

TODO: Check whether the minute and hour values are valid (i.e. <60)

Parameters time_str – The potential time representation to validate

Returns: True if time_str is a valid time, False otherwise

3.1.6 scorevideo_lib.transfer_lights_on_marks module

A tool that adds marks to scored log files based on a LIGHTS ON behavior

16 Chapter 3. scorevideo_lib

scorevideo_lib Documentation, Release 0.1.0

The marks are added with negative time and frame so as to accurately record when, relative to the start of the scored
log file, the lights were recorded coming on.

When called directly, this script assumes that the log files are present in the current directory (.). Files are partitioned
such that each partition holds the logs for one fish on one day. Afternoon files are ignored, and the LIGHTS_ON
behavior in the _1 or _2 logs is transferred to the _Morning log.

WARNING: This script is NOT general. It is specific to one particular experiment. It may, however, be a useful
example for other researchers.

class scorevideo_lib.transfer_lights_on_marks.ExpectedFile(present: List[str]
= None, absent:
List[str] = None,
regex: str = None)

Bases: object

Describes the characteristics of a file name for matching

This is used in PART_REQUIRED and PART_OPTIONAL to describe required and allowed files.

match(to_test: str)→ bool
Checks whether a file name matches this description.

A file matches if it satisfies every specified instance field. For example: >>> ExpectedFile([‘a’, ‘b’],
[‘c’]).match(‘ab’) True >>> ExpectedFile([‘a’, ‘b’], [‘c’]).match(‘abc’) False >>> ExpectedFile([‘a’, ‘b’],
[‘c’]).match(‘ac’) False >>> ExpectedFile([‘a’, ‘b’], [‘c’]).match(‘a’) False >>> ExpectedFile([‘a’, ‘b’],
[‘c’], r’[abc]*.txt’).match(‘ab’) False >>> ExpectedFile([‘a’, ‘b’], [‘c’], r’[abc]*.txt’).match(‘ab.txt’) True
>>> ExpectedFile([‘a’, ‘b’], [‘c’], r’[abc]*.txt’).match(‘abc.txt’) False

Parameters to_test – The string to check for matching

Returns True if and only if the file name matches.

scorevideo_lib.transfer_lights_on_marks.batch_mark_lights_on(path_to_log_dir:
str)→ None

Transfer LIGHTS ON marks en masse for all logs in a directory

The logs are partitioned using same_fish_and_day() into groups of logs that pertain to the same fish on
the same day. A LIGHTS ON behavior in one of the aggression logs is transferred to the full scoring log,
accounting for the change in reference point for frame numbers and times. The LIGHTS ON behavior can
instead be specified in a separate lights-on log (see is_lights_on()). This log should have the same name
as the log in which the LIGHTS ON behavior would otherwise be (before being transferred), except its name
(before the terminal extension like .txt) should end in _LIGHTSON and the initials of the scorer may differ.

Parameters path_to_log_dir – Path to the directory of logs to process

Returns None

scorevideo_lib.transfer_lights_on_marks.copy_lights_on(aggr_logs:
List[scorevideo_lib.parse_log.Log],
scored_log: scorev-
ideo_lib.parse_log.RawLog,
aggr_behav_des=typing.List[str])
→ scorev-
ideo_lib.parse_log.RawLog

Copy a LIGHTS ON mark from aggression logs to the scored log

Parameters

• aggr_logs – Aggression logs are the _1 or _2 logs in which the researcher is looking for
the first aggressive or submissive behavior by the focal male to begin scoring.

• scored_log – The scored log is the log from the video that was fully scored for behaviors.

3.1. scorevideo_lib package 17

scorevideo_lib Documentation, Release 0.1.0

• aggr_behav_des – List of behavior description sections that indicate that a particular
behavior is considered aggressive or submissive for the purposes of beginning to fully score
the video.

Returns: A copy of scored_log, but with the LIGHTS ON mark inserted.

scorevideo_lib.transfer_lights_on_marks.find_scored_lights(partition: List[str])
→ Tuple[str,
Union[str, None-
Type]]

Find the full scoring and lights-on log of a partition

Full scoring logs are identified by is_scored(), and lights-on logs are identified by is_lights_on().

Parameters partition – The list of file names from which to identify lights-on and full scoring
logs.

Returns Tuple of file names of full scoring log and lights-on log. If no lights on log is found, None
is returned instead.

Raises ValueError – If duplicate full scoring logs or lights-on logs are found, if no full scoring
log is found, or if the scoring log is the same as the lights-on log.

scorevideo_lib.transfer_lights_on_marks.get_last_name_elem(filename: str)→ str
Get the last underscore-delimited element of the name minus extensions

The last element is the part that distinguishes videos of the same fish on the same day. For example:

>>> get_last_name_elem("log050118_OB5B030618_TA23_Dyad_Morning.avi_CS")
'Morning'
>>> get_last_name_elem("log050118_OB5B030618_TA23_Dyad_2.avi_CS")
'2'

Parameters filename – The name from which to get the last element

Returns: The last element of the file, which distinguishes videos of the same fish on the same day

scorevideo_lib.transfer_lights_on_marks.get_name_core(filename: str)→ str
Get the core of a filename

The core is the part of the filename that precedes the identifier that separates videos of the same fish on the same
day. For example:

>>> get_name_core("log050118_OB5B030618_TA23_Dyad_Morning.avi_CS")
'log050118_OB5B030618_TA23_Dyad'
>>> get_name_core("log050118_OB5B030618_TA23_Dyad_1.avi_CS.txt")
'log050118_OB5B030618_TA23_Dyad'
>>> get_name_core("tmp/log050118_OB5B030618_TA23_Dyad_Morning.avi_CS")
'log050118_OB5B030618_TA23_Dyad'

Parameters filename – The filename from which to extract the core

Returns: The core of the filename

scorevideo_lib.transfer_lights_on_marks.get_partitions(path_to_log_dir: str)
Get partitioned file names from the specified directory

Files beginning with . are filtered out, as are any files for which name_filter() returns False. Names are
partitioned using equiv_partition(), where equivalence is determined by same_fish_and_day()

18 Chapter 3. scorevideo_lib

scorevideo_lib Documentation, Release 0.1.0

returning True. Each name includes the provided path as a prefix. Partitions are validated using
validate_partition().

Parameters path_to_log_dir – Path to the directory containing log files to partition

Returns A valid partitioning of the file names.

Raises ValueError – If any of the partitions fail validation

scorevideo_lib.transfer_lights_on_marks.is_lights_on(filename: str)→ bool
Check whether a filename is for a lights-on log

A lights-on log has the same name as another log, but ends with _LIGHTSON. This signals that the LIGHTS
ON behavior in the lights-on log should be transferred, maintaining timestamp and frame number, to the log of
the same name (minus _LIGHTSON, and perhaps different scoring initials). Note that the terminal file extension
(e.g. .txt) is ignored.

>>> is_lights_on("log050118_OB5B030618_TA23_Dyad_Morning.avi_CS.txt")
False
>>> is_lights_on("log050118_OB5B030618_TA23_Dyad_1.avi_CS_LIGHTSON.txt")
True

Parameters filename – Name of log file to check

Returns Whether the file is a lights-on log

scorevideo_lib.transfer_lights_on_marks.is_scored(filename: str)→ bool
Check whether a filename is for a full scoring log

Uses get_last_name_elem() and checks whether the last name element is Morning or Afternoon.

>>> is_scored("log050118_OB5B030618_TA23_Dyad_Morning.avi_CS")
True
>>> is_scored("log050118_OB5B030618_TA23_Dyad_1.avi_CS")
False

Parameters filename – The filename to check

Returns: Whether the file is for a full scoring log

scorevideo_lib.transfer_lights_on_marks.name_filter(filename: str)→ bool
Filter for filenames that should be included for processing

Includes the numbered log files, and the Morning log files. Excludes the Afternoon log files.

>>> name_filter("log050118_OB5B030618_TA23_Dyad_Morning.avi_CS.txt")
True
>>> name_filter("log050118_OB5B030618_TA23_Dyad_Afternoon.avi_CS.txt")
False
>>> name_filter("log050118_OB5B030618_TA23_Dyad_3.avi_CS.txt")
True

The log prefix is ignored

>>> name_filter("050118_OB5B030618_TA23_Dyad_Morning.avi_CS.txt")
True
>>> name_filter("050118_OB5B030618_TA23_Dyad_Afternoon.avi_CS.txt")
False
>>> name_filter("050118_OB5B030618_TA23_Dyad_3.avi_CS.txt")
True

3.1. scorevideo_lib package 19

scorevideo_lib Documentation, Release 0.1.0

Parameters filename – The filename to check

Returns Whether the file should be included for analysis

scorevideo_lib.transfer_lights_on_marks.normalize_name(filename: str)→ str
Normalize a filename by adding a prefix log if not already present

>>> normalize_name("1.wmv_CS.txt")
'log1.wmv_CS.txt'
>>> normalize_name("log1.wmv_CS.txt")
'log1.wmv_CS.txt'
>>> normalize_name("logfoo")
'logfoo'

Parameters filename – The filename to normalize

Returns The normalized filename.

scorevideo_lib.transfer_lights_on_marks.read_aggr_behav_list()→ List[str]
Read in the list of FM behaviors that are aggressive / submissive

Returns: List of behaviors that constitute the start of behavior, trimming off trailing whitespace

scorevideo_lib.transfer_lights_on_marks.same_fish_and_day(name1: str, name2:
str)→ bool

Check whether two files are from the same fish on the same day

Uses get_name_core() to see whether the names have the same core.

>>> same_fish_and_day("log050118_OB5B030618_TA23_Dyad_Morning.avi_CS",
→˓"log050118_OB5B030618_TA23_Dyad_1.avi_CS")
True
>>> same_fish_and_day("050118_OB5B030618_TA23_Dyad_Morning.avi_CS",
→˓"log050118_OB5B030618_TA23_Dyad_1.avi_CS")
True
>>> same_fish_and_day("log050118_OB5B030618_TA25_Dyad_Morning.avi_CS",
→˓"log050118_OB5B030618_TA23_Dyad_1.avi_CS")
False
>>> same_fish_and_day("050118_OB5B030618_TA25_Dyad_Morning.avi_CS",
→˓"log050118_OB5B030618_TA23_Dyad_1.avi_CS")
False

Parameters

• name1 – One filename to check

• name2 – One filename to check

Returns: Whether the names share a core

scorevideo_lib.transfer_lights_on_marks.validate_partition(partition: List[str])
→ List[str]

Validates a partitioning of files

Ensures that no two files match an element of PART_OPTIONAL, and ensures that exactly one file matches each
element of PART_REQUIRED. Also ensures that no files that don’t match any element of either are present.

Parameters partition – The list of file names to validate

Returns A list of problem descriptions, one for each problem discovered. No problems are found if
and only if [] is returned.

20 Chapter 3. scorevideo_lib

scorevideo_lib Documentation, Release 0.1.0

3.1.7 Module contents

scorevideo_lib is a library of tools that makes it easier to work with the scorevideo MATLAB program
for scoring (annotating) animal behavior videos. This project is still very early in development, and many features
remain to be implemented. Contributions are welcome! If you are interested in contributing, see the documentation
for contributors.

If you’re just looking to get started with these tools, see the getting started guide.

The code is hosted here: https://github.com/u8nwxd/scorevideo_lib

3.1. scorevideo_lib package 21

contributing.html
contributing.html
getting-started.html
https://github.com/u8nwxd/scorevideo_lib

scorevideo_lib Documentation, Release 0.1.0

22 Chapter 3. scorevideo_lib

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

23

scorevideo_lib Documentation, Release 0.1.0

24 Chapter 4. Indices and tables

Python Module Index

s
scorevideo_lib, 21
scorevideo_lib.add_marks, 7
scorevideo_lib.base_utils, 8
scorevideo_lib.exceptions, 9
scorevideo_lib.parse_log, 9
scorevideo_lib.transfer_lights_on_marks,

16

25

scorevideo_lib Documentation, Release 0.1.0

26 Python Module Index

Index

A
add_to_partition() (in module scorevideo_lib.base_utils),

8

B
BaseOps (class in scorevideo_lib.base_utils), 8
batch_mark_lights_on() (in module scorev-

ideo_lib.transfer_lights_on_marks), 17
BehaviorFull (class in scorevideo_lib.parse_log), 9

C
commands (scorevideo_lib.parse_log.RawLog attribute),

12
copy_lights_on() (in module scorev-

ideo_lib.transfer_lights_on_marks), 17
copy_mark() (in module scorevideo_lib.add_marks), 7
copy_mark_disjoint() (in module scorev-

ideo_lib.add_marks), 7

D
description (scorevideo_lib.parse_log.BehaviorFull at-

tribute), 10

E
equiv_partition() (in module scorevideo_lib.base_utils), 9
ExpectedFile (class in scorev-

ideo_lib.transfer_lights_on_marks), 17
extend() (scorevideo_lib.parse_log.Log method), 10

F
FileFormatError, 9
find_scored_lights() (in module scorev-

ideo_lib.transfer_lights_on_marks), 18
frame (scorevideo_lib.parse_log.BehaviorFull attribute),

9
frame (scorevideo_lib.parse_log.Mark attribute), 11
from_file() (scorevideo_lib.parse_log.Log class method),

10

from_file() (scorevideo_lib.parse_log.RawLog class
method), 13

from_line() (scorevideo_lib.parse_log.Mark class
method), 11

from_lines() (scorevideo_lib.exceptions.FileFormatError
static method), 9

from_log() (scorevideo_lib.parse_log.Log class method),
10

from_raw_log() (scorevideo_lib.parse_log.Log class
method), 10

from_raw_log() (scorevideo_lib.parse_log.RawLog class
method), 13

full (scorevideo_lib.parse_log.Log attribute), 10
full (scorevideo_lib.parse_log.RawLog attribute), 13

G
get_ending_behav() (in module scorev-

ideo_lib.add_marks), 8
get_ending_mark() (in module scorev-

ideo_lib.add_marks), 8
get_last_name_elem() (in module scorev-

ideo_lib.transfer_lights_on_marks), 18
get_name_core() (in module scorev-

ideo_lib.transfer_lights_on_marks), 18
get_partitions() (in module scorev-

ideo_lib.transfer_lights_on_marks), 18
get_section() (scorevideo_lib.parse_log.RawLog static

method), 13
get_section_commands() (scorev-

ideo_lib.parse_log.RawLog static method),
13

get_section_full() (scorevideo_lib.parse_log.RawLog
static method), 13

get_section_header() (scorevideo_lib.parse_log.RawLog
static method), 14

get_section_marks() (scorevideo_lib.parse_log.RawLog
static method), 14

get_section_notes() (scorevideo_lib.parse_log.RawLog
static method), 14

27

scorevideo_lib Documentation, Release 0.1.0

get_section_raw() (scorevideo_lib.parse_log.RawLog
static method), 14

get_section_video_info() (scorev-
ideo_lib.parse_log.RawLog static method),
14

H
header (scorevideo_lib.parse_log.RawLog attribute), 12

I
is_lights_on() (in module scorev-

ideo_lib.transfer_lights_on_marks), 19
is_scored() (in module scorev-

ideo_lib.transfer_lights_on_marks), 19

L
Log (class in scorevideo_lib.parse_log), 10

M
Mark (class in scorevideo_lib.parse_log), 11
marks (scorevideo_lib.parse_log.Log attribute), 10
marks (scorevideo_lib.parse_log.RawLog attribute), 13
match() (scorevideo_lib.transfer_lights_on_marks.ExpectedFile

method), 17

N
name (scorevideo_lib.parse_log.Mark attribute), 11
name_filter() (in module scorev-

ideo_lib.transfer_lights_on_marks), 19
normalize_name() (in module scorev-

ideo_lib.transfer_lights_on_marks), 20
notes (scorevideo_lib.parse_log.RawLog attribute), 13

R
raw (scorevideo_lib.parse_log.RawLog attribute), 12
RawLog (class in scorevideo_lib.parse_log), 12
read_aggr_behav_list() (in module scorev-

ideo_lib.transfer_lights_on_marks), 20
remove_trailing_newline() (in module scorev-

ideo_lib.base_utils), 9

S
same_fish_and_day() (in module scorev-

ideo_lib.transfer_lights_on_marks), 20
scorevideo_lib (module), 21
scorevideo_lib.add_marks (module), 7
scorevideo_lib.base_utils (module), 8
scorevideo_lib.exceptions (module), 9
scorevideo_lib.parse_log (module), 9
scorevideo_lib.transfer_lights_on_marks (module), 16
section_to_strings() (scorevideo_lib.parse_log.RawLog

static method), 15
SectionItem (class in scorevideo_lib.parse_log), 15

sort_lists() (scorevideo_lib.parse_log.Log method), 11
split_line() (scorevideo_lib.parse_log.SectionItem static

method), 15
str_to_timedelta() (scorevideo_lib.parse_log.SectionItem

static method), 15
subject (scorevideo_lib.parse_log.BehaviorFull attribute),

10

T
time (scorevideo_lib.parse_log.BehaviorFull attribute),

10
time (scorevideo_lib.parse_log.Mark attribute), 11
time_to_str() (scorevideo_lib.parse_log.Mark static

method), 11
to_line() (scorevideo_lib.parse_log.Mark method), 12
to_line_tab() (scorevideo_lib.parse_log.Mark method),

12
to_lines() (scorevideo_lib.parse_log.RawLog method), 15

V
validate_description() (scorev-

ideo_lib.parse_log.SectionItem static method),
16

validate_frame() (scorevideo_lib.parse_log.SectionItem
static method), 16

validate_partition() (in module scorev-
ideo_lib.transfer_lights_on_marks), 20

validate_subject() (scorev-
ideo_lib.parse_log.BehaviorFull static method),
10

validate_time() (scorevideo_lib.parse_log.SectionItem
static method), 16

video_info (scorevideo_lib.parse_log.RawLog attribute),
12

28 Index

	Getting Started
	Getting the Code and Dependencies

	Contributing
	Your First Contribution
	Guidelines

	scorevideo_lib
	scorevideo_lib package

	Indices and tables
	Python Module Index

